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Abstract Recently observed oscillations in the solar atmosphere have been inter-
preted and modeled as magnetohydrodynamic wave modes. This has allowed the
estimation of parameters that are otherwise hard to derive, such as the coronal
magnetic-field strength. This work crucially relies on the initial detection of the
oscillations, which is commonly done manually. The volume of Solar Dynamics
Observatory (SDO) data will make manual detection inefficient for detecting all
of the oscillating regions. An algorithm is presented which automates the detec-
tion of areas of the solar atmosphere that support spatially extended oscillations.
The algorithm identifies areas in the solar atmosphere whose oscillation content is
described by a single, dominant oscillation within a user-defined frequency range.
The method is based on Bayesian spectral analysis of time-series and image
filtering. A Bayesian approach sidesteps the need for an a-priori noise estimate to
calculate rejection criteria for the observed signal, and it also provides estimates
of oscillation frequency, amplitude and noise, and the error in all these quantities,
in a self-consistent way. The algorithm also introduces the notion of quality mea-
sures to those regions for which a positive detection is claimed, allowing simple
post-detection discrimination by the user. The algorithm is demonstrated on
two Transition Region and Coronal Explorer (TRACE) datasets, and comments
regarding its suitability for oscillation detection in SDO are made.

Keywords: Sun: active region, Sun: magnetic field

1. Introduction

The Solar and Heliospheric Observatory (SOHO) and TRACE missions es-
tablished that the solar corona supports observable oscillations. The extensive
literature on the theory of oscillations in coronal flux tubes has been used in
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conjunction with observationally derived parameters to deduce conditions in the
corona. The study of these oscillations is called coronal seismology (in analogy
to terrestrial seismology). Their general features, as determined by current anal-
yses, and their implications for the physics of the corona are summarized briefly
below; more detailed reviews can be found in De Moortel (2005) and Nakariakov
and Verwichte (2005). Quasi-periodic oscillations, interpreted as propagating
slow waves have been detected in coronal plumes SOHO/Ultraviolet Coronal
Spectrograph (UVCS: Ofman et al., 1997); SOHO/Extreme Ultraviolet Imaging
Telescope (EIT: Deforest and Gurman, 1998). A similar phenomenon (at higher
frequency) has also been detected at the base of coronal loops (Berghmans and
Clette, 1999; Nightingale, Aschwanden, and Hurlburt, 1999; De Moortel, Ireland,
and Walsh, 2000; Robbrecht et al., 2001). They are interpreted as propagating
slow waves since they travel at approximately the sound speed and are seen
as intensity (and therefore density) variations propagating and decaying away
from the base of the flux tube through the corona. The observed periodicities
fall into distinct ranges around three and five minutes (De Moortel et al., 2002),
suggesting that the oscillations are due to different connectivity to either sunspot
or transition-region moss magnetic field respectively. Coronal seismological ap-
plications for these oscillations include determination of the connectivity of the
photosphere to the corona (de Pontieu, Erdélyi, and De Moortel, 2005) as well
as deriving information on the coronal heating function since the wave observ-
ables (e.g., period and damping length) are strongly dependent on the thermal
conditions of the corona (De Moortel and Hood, 2003; De Moortel and Hood,
2004).

All of these studies have in common that the oscillating feature was discovered
by a manual examination of data in regions known (or suspected) to contain
oscillating material. Although a successful strategy for detecting oscillations, it
is clearly impractical for ever-increasing rates of data acquisition. For example,
the SDO mission is acquiring ;1.4 Tb of science data per day, around 1000
times the data rate of SOHO. Much of this data will be taken at cadences
and spatial resolutions comparable to the best that TRACE can produce, the
key difference from TRACE being that SDO will provide a near continuous,
full disk coverage of the Sun in multiple wavelengths simultaneously. Given the
diagnostic possibilities of these waves, and the large amount of data that will
become available, an automated detection algorithm is necessary. There are at
least five published algorithms, which are briefly described below.

Nakariakov and King (2007) use a thresholded fast Fourier Transform to find
locations in TRACE data that may support an oscillatory signal. The threshold
level is defined as three—four times the average FFT power; if the maximum
FFT power is above this level then the frequency at which that power occurs
is assumed to be real. Since this method relies on the FFT, it is very fast. The
definition of the threshold is chosen to speed up the algorithm in comparison to
calculating a threshold; for example, implementing the randomization method of
Linnell-Nemec and Nemec (1985) requires at least an estimated 150 times more
FFT calculations. Linnell-Nemec and Nemec (1985) establish frequency accep-
tance/rejection criteria based on probabilistic arguments whereas Nakariakov
and King (2007) use essentially empirically derived arguments to establish the
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threshold. Further, identification of contiguous groups of pixels that might form
an oscillatory region is carried out by manual inspection. To aid identification,
the authors assume a null hypothesis that the entire time-series consists solely
of Gaussian distributed noise, and so the chance that any two neigboring pixels
contain the same frequency is small. Hence, if two or more neighboring pixels do
satsisfy the selection criteria, then it is likely they are physically connected. These
assumptions ignore two effects: firstly, neighboring pixels are not statistically
independent due to the point spread function of the instrument. Secondly, the
Sun is observed to have physically connected structures, such as loops, that
exist over many pixels in at least one direction, and so by continuity, one can
expect that neighboring pixels do influence each other. Hence the assumption
that neighboring pixels are independent of each other is an over-simplification
of the nature of the image. The authors suggest that the algorithm be used to
identify regions in the data worthy of further study, although there is no quoted
method of automated region identification.

De Moortel and McAteer (2004) describe an automated oscillation detection
algorithm based on the wavelet analysis routines of Torrence and Compo (1998)
and the analysis procedure of Ireland et al. (1999). The algorithm finds significant
wave packets ranging from single to multiple wave cycles in duration, by a wavelet
power /confidence level comparison against the null hypothesis that a given time-
series is Gaussian distributed noise. Shorter duration detections are rejected.
Contiguous regions of multi-cycle duration wave packets are found in the data,
but are identified and isolated manually by inspection.

Sych and Nakariakov (2008) base their detection algorithm on pixelized wavelet]]
filtering (PWF) of a three-dimensional data cube (x,y,t). This too is based on
the wavelet analysis routines of Torrence and Compo (1998), but has a more
complex treatment of the resultant wavelet spectrum. Regions of interest are
found by first calculating a variance map (Grechnev, 2003) of the signal; regions
with high variance are candidate oscillatory regions (note that this must also
imply the removal of a background trend in order for the variance to measure
an oscillatory signal, and not the trend). Wavelet spectra are calculated for
those pixels, and only the “significant” pixels are retained (what constitutes a
significant signal is not stated explicitly). The routine analyzes further (than De
Moortel and McAteer, 2004) the temporal evolution of the oscillation and so can
differentiate between standing and traveling waves.

The algorithm presented by McIntosh, de Pontieu, and Tomezyk (2008) can
also differentiate between standing and traveling waves. The algorithm begins
by Fourier transforming the entire data cube, performing cross correlations
with neighboring pixels in narrow frequency bands, and filtering the results (by
thresholding on various quantities, such as eliminating areas where the relative
error in the calculated phase speed is large) to determine groups of pixels that
are highly correlated in both time and space. This correlation technique allows
the discrimination of standing and traveling waves, and the calculation of other
parameters such as the phase speed and the propagation angle. There is an
implicit null hypothesis in the algorithm: at one stage, only time-series with a
high coherence are accepted for further analysis. The null hypothesis here is that
the candidate time-series is pure noise, with the additional assumption that pairs
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of noisy time-series have low coherence, and so can be rejected. However, this is
not strictly true; Chatfield (1996) shows an example of two different noisy time-
series that have a perfect coherence over all spectral frequencies because both
time-series are generated from the same noise process. Highly coherent patches
of non-oscillatory material are probably filtered out in the next stage of the
algorithm, where regions with a poorly determined phase speed (large error) are
discarded; this, however, has not been explicitly tested (S. W. McIntosh, private
communication, 2008).

It is clear that there is an increasing amount of effort in finding oscillatory
regions and identifying waves in the solar atmosphere. All the above algorithms
show promising results and avenues for further work. The algorithm presented
here seeks to find regions in the data which support oscillations via Bayesian
time-series analysis. This involves calculating explicitly the probability that a
time series supports an oscillation of a given frequency. This is in distinction to
the methods above, which rely on statements about null hypotheses in order to
determine if an oscillation is present. Section 2 introduces Bayes’ Theorem and an
application of it to time-series analysis. Section 3 describes a detection algorithm
based on the results of Section 2, whilst Section 4 describes the application of
this algorithm to some example datasets from the TRACE mission. Finally,
Section 6 discussions some further applications of Bayesian time-series analysis
and automated EUV detection algorithms.

2. Bayesian Time-Series Analysis

Denoting by p(a|b) the conditional probability that proposition a is true, given

that proposition b is true, Bayes’ theorem is

p(H|I)p(D|H, I)
p(D[I)

p(H|D,I) = (1)

where H is the hypothesis to be tested, D is the observation, and I is any
applicable prior information that we have before making the observation (Bayes,
1763). The left hand side p(H|D,I) is called the posterior probability of the
hypothesis, given the data and the prior information, and it encapsulates the
available knowledge about the hypothesis. The quantity p(H |I) is called the prior
distribution and represents what we know about H prior to any data collection.
Often a prior describes a probability distribution of likely parameter values. The
sampling distribution or likelihood (p(D|H,I)) represents the likelihood of the
data given the hypothesis (as well as any prior information). The quantity p(D|I)
is the prior probability of the data; it is absorbed into a normalization constant,
and does not affect the following analysis for a given model. Equation (1) is
very general and is not restricted to the mathematical equations: any logical
proposition can be treated in a Bayesian context (Jaynes, 2003; Gregory, 2005).

ts_preprint.tex; 4 July 2010; 9:16; p. 4



4 Ireland et al.

2.1. Signal Containing a Single Frequency

For the purposes of detecting oscillations in solar time-series d(t;), the linear
model

d(fi) = by coswt; + by sin(wti) + x; (2)

is used. This assumes that all time-series are modeled as a single oscillation plus
Gaussian distributed noise. Under some simplifying assumptions (N >> 1 and
that there are no low-frequency oscillations present), Jaynes (1987), Bretthorst
(1988), and O Ruanaidh and Fitzgerald (1996) derive an expression for the
probability that the time-series contains an oscillation of frequency w for the
model oscillation above, that is,
20(w) ]
pleld 1) o |1 208 @

where p=1/n)."_, d? and

j=1"3

0w = 5[ L e g

is the Schuster periodogram (Schuster, 1898). The full details of the derivation of
Equation (3) are contained in the appendix. This is a probability measure that
a given frequency is present in the data that does not require explicit knowledge
of the Gaussian noise present. Equation (3) can analyze unevenly sampled data
due to its use of the Schuster periodogram. If the analysis frequencies are

wp =2mp/n,0<p<n/2-1, (5)

Equation (4) is proportional to the power of the fast Fourier transform (FFT)
of the data (Cooley and Tukey, 1965; Chatfield, 1996). The speed of the FFT
transform can be exploited for data which are evenly or close to evenly spaced.

2.2. Example Analysis

Figure 1 demonstrates the application of the above equations to the analysis of
a single time-series. The true oscillation is an evenly sampled simple cosine at
frequency f = 3.33 mHz (100 data points at a cadence of 26.4 seconds) with unit
amplitude. The fake data is this oscillation corrupted by Gaussian distributed
noise with deviation of o = 1, a signal-to-noise ratio of 1 (Figure 1(a)). The
probability function, Equation 3, is highly peaked close to the true frequency
and the probability that the signal contains a frequency within the range 3.0
3.5 mHz exceeds 99% (Figure 1(b)). Figures 1(c,d) show the measured basis
function amplitudes and Gaussian deviation estimate respectively as a function
of frequency. Both lie close to their true values at the true frequency, as indicated
by the solid vertical line. The quoted values shown in each plot (Figure 1(b,c,d))
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Figure 1. An example analysis using the Bayesian approach of Section 2. Panel (a) shows the
true oscillation, the observed (noisy) data, and the estimate. Panel (b) shows the probability—
density function arising from the observed data. Panel (c) shows the estimated amplitudes as
a function of frequency [f], and panel (d) shows the estimated noise as a function of frequency.
Final quantity estimates and an estimated error are shown also. See Section 2 for more detail.

are found at w = @, the most probable frequency. An error estimate is given by
the standard deviation

[sa (3)]" = lﬁ;p(wi) [9(w) — 0(0) (6)

where ¢(w) stands for the analyzed frequency range, the distribution of ampli-
tudes (found from Equation (13) — see appendix) and the distribution of o (found
from Equation (15) — see appendix) as a function of the analysis frequency set
w;, 1 <i < N, (such as the Fourier set, Equation (5)).

These estimates of frequency probability, oscillation amplitude and Gaussian
noise deviation have all been obtained without explicitly performing a least-
squares fit, or with no special a-priori knowledge of the noise in the signal other
than the assumption of a Gaussian distribution.

The peakedness of the Bayesian probability-density function immediately
suggests that a search for portions of the {w} parameter space that contain
most of the probability are the values that are of greatest interest. In addition,
prior knowledge from previous studies of solar atmospheric oscillations suggests
which regions of the parameter space are of interest. These two observations are
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combined below to take the first steps towards creating an automated oscilla-
tion detection algorithm which can identify oscillation regions and return useful
information, such as their amplitude.

3. Detection using Bayesian Spectral Analysis
3.1. Data

The data that we will use are three dimensional datacubes (z,y,t), with the x
and y locations referring to spatial locations (pixels) on the Sun, and ¢, time.
time-series are formed by choosing a particular location on the Sun and extract-
ing a one-dimensional time-series (occasionally super-pixels formed by the sum
of neighbouring pixels are used to increase the signal-to- noise ratio).

3.2. Probability and Frequency Bands

In order to use Equation (3) to detect oscillations, further assumptions must be
made. The algorithm assumes that the range of possible frequencies is limited to
that spanned by the Fast Fourier Transform applied to a time-series of similar
length. This permits us to normalize the probablity density function over a fixed
range of frequencies. We are commonly interested in detecting oscillations in
given frequency bands (say the three or five minute oscillation frequency bands),
and so we calculate the probability that the oscillation in a given pixel lies within
the range w1, ws], that is,

wo
Doz = / p(|D, I ()

1

at every point in the image. Large values of p,, «, indicate that the true oscil-
lation frequency is very likely to be within the range [wy, wa].

The Bayesian formulation handily yields both computational and logical ad-
vantage over other frequentist approaches for oscillating-pixel detection. The
prime derived data product for each pixel is a probability distribution describ-
ing the probability of a given frequency in the data and so there is no need
to perform secondary, often computationally expensive calculations, such as
randomization tests (Linnell-Nemec and Nemec, 1985; O’Shea et al., 2001) to
assess the probability that the frequency is present or not. Frequentist-based
approaches to detecting oscillations rely on calculating the expectated value
of the Fourier transform power at a given confidence level, assuming that the
observed data arises from the null hypothesis that the time-series is pure noise. If
the Fourier transform power of the observed time-series exceeds the expectation
value, then the null hypothesis is rejected at that confidence level. This, however,
strictly cannot be used to imply the presence of an oscillation; we have merely
rejected the null hypothesis. In comparison, Equation (7) directly calculates the
probability that the frequency of oscillation lies in the range w1, ws], under the
modeling assumptions of Section 2.
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Algorithm: Bayesian probability—based oscillation detection

1 begin

2 Prepare data: apply instrument calibrations and de-rotate data cube.
Detrend data and ensure data has zero mean.
for each time-series d, ,(t) in the data cube (z,y,t)

Calculate py, o, for given wy,ws at (z,y).

3

4

5

6 end
7 Generate map M of the spatial distribution of probability p., w,
8  Filter map to find the “highly probable” oscillation areas.

9 Report these areas and derive useful parameters.

10 end

Figure 2. Pseudo-code algorithm to find oscillating locations in (z,y,t) data cubes.

3.3. An Algorithm

Figure 2 describes the general-purpose algorithm used to find oscillating spa-
tial locations in the data cube. Step 2 relies on instrument calibration routines
provided by instrument teams, and on standard solar de-rotation routines, both
provided in the IDL/Solarsoft package. Time-series de-trending (Step 3) is nec-
essary for two reasons. The first is dictated by our choice of oscillation model,
Equation (2). This model assumes that the time series contains a single oscilla-
tion only, and no other features. (It is certainly possible to define other models
that do contain a background trend, or multiple frequencies, and calculate prob-
ability density functions for those time-series. However, these more sophisticated
analyses are not necessary for us to make progress in the current application of
locating oscillating material). Secondly, strong background trends can pollute the
Fourier power spectrum with spectral power unrelated to the oscillation. This
can lead to the mis-identification of peaks in the power spectrum as oscillatory
when they are not. It should be noted that the influence of background trend on
locating oscillations of a given frequency will influence all proposed automation
algorithms.

De-trending in Step 3 is accomplished by subtracting a running average of
the time-series (a window of size R seconds is slid across the time-series and
the running average of the data lying entirely within that window is calculated).
Since previous experience has told us that there are oscillations of interest that
have periods less than 500 seconds, it seems to us that 500 seconds is a reasonable
to chose for these data (Aschwanden et al., 2002). Timescales longer than R can
be considered to be associated with the background trend. Timescales shorter
than R potentially support an oscillation. Fourier power spectra of smooth time-
series that have had their background trend subtracted have extremely low power
at frequencies less than that corresponding to R. Therefore, these low frequencies
corresponding to the background trend have an extremely low probability and
are not selected.

Step 5 finds the probability that the time-series has a single frequency in the
range [wy,ws]. There are several ways of defining [wy, ws]. In the work below the

ts_preprint.tex; 4 July 2010; 9:16; p. 8



8 Ireland et al.

Jul. 1 171A example image Jul. 14 example image
( ) 250 F . : . : o (d) § , ,
a >
200 __300¢F ‘{3' (] ]
& &
~ 150 ~
> > 200F k!
5 100 5
9 o
¢ ® 100F g
50
0 . . . . 0 . . .
0 50 100 150 200 250 0 100 200 300
solar X (px) solar X (px)

171A Most Probable Frequency (probability) (e)

Most Probable Frequency (probability)

—~
o T
~

1.000 250 F = 1.000
0.833 0.833
200 300
. 06671 X . 06678 &
% ~ 150 % ~
S 0.500 { > b S 0.500 ] > 200
0 5 100f 0 5
033311 © = 03331 ©
@ 3 » 100
0.167 50 0.167
0.000 0 0.000 0
0 50 100 150 200 250 0 100 200 300
solar X (px) solar X (px)
(C) 171A Most Probable Frequency (frequency) (f) Most Probable Frequency (frequency)
8.3 250 3 417
7.6 3.94 .
_ 200 _ 300
T 6o % : T 370l 5 :
ETRS 150k £ —
3 6.3H > 3470 > 200
g 5 100 2 5
o o
g 561 0 § e
4.9 50 3.01
42 0 2.78 0
0 50 100 150 200 250 0 100 200 300
solar X (px) solar X (px)

Figure 3. Example image data and probability and frequency maps. Panels a, b, and c refer
to TRACE 171A data taken on 1st July 1998 and analyzed for oscillations in the three-minute
frequency band 4.17 < fmax < 8.33 mHz), and panels d, e and f refer to TRACE 171A
data taken on 14 July 1998 and analyzed for oscillations in the five-minute frequency band

algorithm begins by first finding the location wmax of the highest peak in the
probability distribution function (PDF) p(w|D,I). If [ < wmax < 2], where
[Q7, Q2] are defined by the user (a frequency filter), then the algorithm proceeds
by stepping away from the peak to find the nearest turning points in the PDF,
located at [wq,ws]. The probability [p, ] is then calculated. This creates the
probability map M of Step 7.

Figure 3(a,b,c) shows some example data, and its analysis up to Step 7. Two
datasets are examined, both in the TRACE 171A wave-band. The first dataset
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consists of 391 observations with a mean 31s cadence taken on 1 July 1998
12:03:10 UT — 15:28:52 UT. The resulting probability map and its concomitant
frequency map are shown in Figures 3(b,c) respectively. There appears to be
a single large area that appears to contain a significant oscillation at differing
frequencies and probabilities.

Cleanly extracting oscillating features is much more difficult for the second
example dataset shows in Figures 3(d,e,f). Here there are many groups of pixels
having similar frequencies and high probability close to each other. In addition,
there are many pixels that have high probability scattered all over the field of
view, further complicating the task of extracting a single group. The eye is very
good at picking out such groups, and the algorithm attempts to mimic some
of this behavior. The detection algorithm attempts to mimic this process by
examining the local spatial distribution of probability. Firstly, it is assumed that
nearby pixels of high probability are physically related, even if their frequencies
may be different. However, these groupings may not be contiguous due to noise,
for example. This may be overcome by smoothing the probability map at differ-
ent lengthscales, and flagging those areas which exceed a certain threshold. This
has the effect of the allowing discontinuous areas of high probability to merge,
in a similar way to how the eye may integrate physically “close” oscillating areas
into one group. More formally, Step 8 implements

1. for m an integer in the range [L1, Lo] :

a) Smooth the probability map [M] with a Gaussian filter of width m.
b) Generate a mask [Z,,] locating all the areas in the smoothed map that
have a smoothed probability at or over 0.5

The lengthscales m allow the user to examine the average spatial probability
structure of the data on multiple lengthscales. This procedure is meant to
mimic the way the eye examines such probability maps, where the eye finds
it easy to integrate over neighbouring high probability features. The upper
lengthscale [Ls] describes the maximum distance that two pixels are assumed
to be potentially physically related to each other. Smaller maximum values
of m cause the smoothed probability masks to break up more, whereas larger
values can cause the creation of groups of pixels which are essentially unre-
lated. The masks [Z,,] found in step 1b denote the areas that are more likely
than not to support contiguous oscillations over the lengthscale m. The net
effect of step 1 is to implement a simple multi-scale analysis of the spatial
probability structure.

2. Add all the masks [Z,,,] together. This is the mask — Z — of all the candidate
pixel groups that may support a significant oscillations.

3. Remove from Z all the candidate pixel groups that form a group smaller than
g pixels. Nominally, we set a minimum group size g = L3; that is, we look
for groups of pixels that are connected over the largest distance set in the
multi-scale analysis of step 1.

4. For a candidate group of area A, remove that group from Z if it has more
than hA zero-probability pixels, 0 < h < 1. The remaining pixel groups are
considered to be regions in the solar atmosphere that support oscillations in
the range 21, Q.
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Table 1. Quantities reported for a contiguous group [G] of pixels found by the detection|
algorithm of Figure 2.

quantity  definition units
K average frequency in a group G mHz
oy standard deviation of frequency mHz
A area of G with a non-zero probability area (px)
Ap.o5 area of G with puw, ,w, > 0.95 area (px)
F A/ (area of group G) dimensionless
P average probability of all pixels having a non-zero probability  dimensionless
Q Fp (quality of the group G) dimensionless
E AQ (the equivalent area of the group G) area (px)

In the results below, Ly = 1 and L, = 4, g = 16; these are chosen in order
to allow smaller width strands to be found in the data. The last part of Step
8 acknowledges that in performing the probability-map smoothing, pixels that
contain no oscillation in the range €y, €2y can be swept into a candidate pixel
group A, and this must have a limit lest the candidate pixel group have too many
lacunae. The final step (Step 9, Figure2) is to report properties of the remaining
pixel groups such as the average frequency [f] and the standard deviation [o ] of
the frequency. The full table of reported results is given in Table 1. In any given
analysis, the regions found result from a series of filters and thresholds made by
the user. However, not all of the regions that survive this process are necessarily
equivalent, they have merely satisfied some set of criteria. These quantities
attempt to measure differences between the surviving oscillatory regions, and
allow the user to further discriminate them at their discretion. Clearly the size
[area A] of the pixel group is important, and the number of highly probable pixels
[A0.95]. The quantity F' measures how complete the group is, and P measures the
average probability that the average oscillation frequency of G is indeed between
Q1,Q9. The quality [Q] is an average probability for the entire group, and the
equivalent area [E] is the area that the group would have if it were entirely
complete (no lacunae) and every oscillation detected in it had pe, o, = 1. These
measures, along with maps of the detected regions showing frequency, amplitude,
and noise estimates (along with error estimates to each of these quantities), are
the final derived products of this automated detection analysis.

4. Results

Data was analyzed from two TRACE observing sequences. Data was prepared
using standard IDL/Solarsoft TRACE routines (TRACE_PREP with the key-
words /wave2point, /unspike, /destreak, /deripple, /norm, /float switched on)
and derotated using IDL/Solarsoft SHIFT-XY to calculate the motion of the
observed piece of Sun, and cubic two-dimensional interpolation to shift subse-
quent images back to the location of the first one. In addition, a strip of data
of width ten pixels at the extreme right of the image is removed, as this is
the location of severe image distortion due to image derotation. Further, all
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time-series are detrended by removing a running average taken over a R = 500
second timescale (see Step 3, Figure 2). In the following results, signal-to-noise

[~2 2
ratio (SNR) is calculated as the estimated amplitude \/b; + by (see Equation
(2)) divided by the Gaussian noise estimate &.

4.1. 1 July 1998

The original data was taken on 1 July 1998 12:30:01 — 14:24:41 UT with an
average cadence of 31 seconds (220 samples) and an image size of 512 x 512
pixels of equivalent size 0.5”. Data are also 2 x 2 summed in space to increase
signal-to-noise ratio (this has the consequent effect of reducing the algorithm
run time). The results of searching in a wideband three-minute range (120 — 240
seconds, or 4.17-6.33 mHz) are shown in Figures 4 (171 A) and 5 (195 A) and
in Table 2(a,b). Most of the field of view does not contain material oscillating
in the analysis frequency range. Only one group of pixels survives the filtering
process, at the base of a coronal-loop fan (Figure 6). However, it is interesting
to note that there are areas of the probability maps Figures 4(b), 5(b) that have
effectively zero probability of supporting an oscillation in the frequency band,
whilst others have a non-zero and low-probability. We speculate that with the
improved SNR of SDO, many of these low probability oscillations will become
much more likely, leading to the detection of many more spatially distributed
signals in the data.

The single oscillating pixel group found (Figure 6) is in the same location as
that identified manually by King et al. (2003) and automatically by McIntosh,
de Pontieu, and Tomczyk (2008). The region is distinctly different from others
in the data. Figures 4(f) and 5(f) show that the detected oscillations in this pixel
group has a fairly low estimated signal-to-noise ratio. The estimated error in the
frequency decreases with increasing SNR, as expected.

The results of searching in the five-minute frequency band (240-360 sec-
onds, or 2.784.17 mHz) are shown in Figures 7 (171 A) and 8 (195 A) and
in Table 2(c,d). The probability maps Figures 4(b), 5(b) look very different
in this frequency range, with low-probability oscillations scattered across the
field of view. It is noticeable, however, that the higher-probability oscillations
are concentrated in the core of the active region, in the regions that appeared
empty in Figures 4(b), 5(b). The algorithm does qualify some pixel groups as
supporting oscillations. King et al. (2003) do not claim any detections in these
areas (although it is not clear if they looked), and McIntosh, de Pontieu, and
Tomezyk (2008) find only one coherent pixel group in the same general region
as those found here. Some of the regions do overlap, suggesting co-temporal and
co-spatial propagation of oscillations in two different layers of the atmosphere.
In the image, the areas in question resemble TRACE moss (Berger et al., 1999;
de Pontieu et al., 1999; Fletcher and de Pontieu, 1999). However the presence
of groups of oscillations at multiple temperatures argues that the algorithm has
found examples of leakage of five minute oscillations from lower down in the
atmosphere to the upper layers, as described by de Pontieu, Erdélyi, and James
(2004) and de Pontieu, Erdélyi, and De Moortel (2005) and references therein.
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Table 2. Quantities reported (see Table 1 for the automatically detected regions found
in 1 July 1998 TRACE 171A and 195A data — see Figures 4, 5, 7, and 8 for maps
and plots of the detected regions listed in (a), (b), (c) and (d) respectively above. The
quantities Q and E are also listed with their rank [r] when compared to all other regions
found in the same dataset.

data T+ of A Apos F p Q [r(Q)] E [r(E)]
3 min
(a) 17T1A 6.04 4+ 0.58 63 25 0955 0.810 0.773 [1] 48.691 [1]
(b) 195A 6.00 + 0.56 75 29 1.000 0.788 0.788 [1] 59.127 [1]
5 min
(c) 171A
1 3.112 £0.149 15 12 0.938 0.957 0.897 [3] 13.457 [10]
2 3.276 £ 0.346 22 14 0917 0.926 0.849 [6] 18.675 [5]
3 3.405 £ 0.354 20 18 0.870 0.965 0.840 [§] 16.791 [7]
4 3.134 £0.159 23 18 1.000 0.951 0.951 [1] 21.877 [2]
5 3.340 £ 0.343 17 9 1.000 0.842 0.842 [7] 14.306 [8]
6 3.268 + 0.327 67 39 0.817 0.868 0.709 [10]  47.520 [1]
7 3.297 £ 0.274 22 16 0.957 0.935 0.894 [4] 19.676 [4]
8 3.195 + 0.184 16 9 0941 0.907 0.853 [5] 13.652 [9]
9 3.067 + 0.204 23 15 1.000 0.912 0.912 [2] 20.982 [3]
10 3.228 +0.149 22 14 0.846 0.934 0.790 [9] 17.379 [6]
(d) 195A
1 3.164 + 0.214 31 15 0.912 0.863 0.787 [6] 24.402 [5]
2 3.209 + 0.334 31 18 0.886 0.904 0.801 [5] 24.833 [4]
3 3.342 £ 0.395 75 42 0.852 0.878  0.748 [9] 56.099 [1]
4 3.166 + 0.254 16 6 1.000 0.840 0.840 [3] 13.433 [§]
5 3.240 + 0.286 41 25 0911 0.895 0.816 [4] 33.451 [2]
6 3.471 +0.289 19 11 1.000 0.911 0.911 [1] 17.305 [6]
7 3.295 £ 0.277 17 12 0.850 0.914 0.777 [§] 13.214 [9]
8 2.998 + 0.133 17 11 0944 0.910 0.859 [2] 14.606 [7]
9 3.200 £ 0.174 34 21 0.895 0.870 0.778 [7] 26.452 [3]

Finally, the plotted points in Figures 7(f), 8(f) appear to lie on horizontal lines
across the plot, which are simply the analysis frequencies. The foregoing analysis
can be done with many more frequencies (see Section 2.1), at the expense of using
the FFT to perform the analysis. This would slow performance, but would lead
to a more precise knowledge of the frequencies present. Since we are primarily
interested in detecting the presence of frequencies in a wide frequency band, the
precision of each frequency detected is not as important as their detection in as
little time as possible.

4.2. 14 July 1998

The original data was taken on 14 July 1998 12:45:19 — 13:42:44 UT with an
average cadence of 73 seconds (sixty samples) and an image size of 512 x 512
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Figure 4. Example image data and results from the analysis algorithm for TRACE 171A
data taken on 1 July 1998 (panel (a)). Panel (b) is the probability that a given pixel supports
an oscillation within the frequency band indicated in panel (c¢), in this case, a three-minute
oscillation frequency band. Panel (c) shows the frquency supported at those pixels. Also
indicated in panels (a—c) are the detected oscillation regions. Note that the region agrees
with that found manually by King et al. (2003) on the following day. The oscillation region is
found at the base of a coronal loop structure, as has been found by many authors (De Moortel
et al., 2002). Panel (d) shows a map of estimated amplitude for the detected regions, whilst
panel (e) shows a map of the signal to noise ratio. Finally, panel (f) shows a panel of the
detected frequency as a function of the signal to noise ratio. The error bars on the abscissa
values are shown at one-tenth of their actual size in order to better show the lower error values
at higher signal-to-noise ratio. Table 2(a) shows the values for the detected region for the
parameters listed in Table 1.
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Figure 5. Example image data and results from the analysis algorithm for TRACE 195A
data taken on 1 July 1998 (panel (a)). Panel (b) is the probability that a given pixel supports
an oscillation within the frequency band indicated in panel (c), in this case, a five-minute
oscillation frequency band. Note that the region agrees with that found manually by King et al.
(2003) on the following day. Panels (d—f) show similar maps to those shown and described
in Figure 4. Table 2(b) shows the values for the detected region for the parameters listed in
Table 1.

pixels of equivalent size 0.5”. Data are also 2 x 2 summed in space to increase
signal-to-noise ratio. TRACE was observing NOAA AR 8270 when a GOES class
M4.6 flare occurred at around 12:55 UT.

A movie of the analyzed data cube shows that the first eight samples show
no sign of any flaring. After that, the flare continues for about another 15—
18 frames. Finally, the flare dissipates and post-flare loops are observable (20
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Figure 6. Zoomed in view of single large oscillation region found in Figures 4 and 5. Panels
(a) and (b) are from the 171A data, and panels (c) and (d) are derived from the 195A data (1
July 1998).

frames). The flare event transfers momentum to the surrounding medium, caus-
ing loops to oscillate. In addition, the whole region evacuates — the flare appears
to blast material away, or at least change its temperature enough to put the
material out of the TRACE 171A passband. The physical phenomena captured
by these observations imply that the resultant time-series have a significant back-
ground trend which varies from location to location. The detrending timescale
(500 seconds) removes the secular background intensity variations such as flaring
and dimming.

Results for the analysis in a three (120-240 seconds) and five minute frequency
band (240-360 seconds) are given in Figure 9 and Figure 10 repestively, and
Table 3. Only three three-minute frequency band regions are found. Two of
them (regions 1 and 3) are distant from the central active region over relatively
dark pieces of corona where the signal is weak. Region 2 (the largest of the three)
overlies a portion of the active region where many oscillations are detected in the
five-minute frequency band; the detection in the three-minute frequency band
may be due to multiple loops each oscillating in the five-minute frequency band
that coincidentally gives the appearance of a three-minute oscillation.

The detection algorithm finds eight of the nine transversely oscillating as
described in Aschwanden et al. (1999) (their Figure 1, oscillations 1 through 9
excepting 5). Many of the other claimed detections of Figure 10 are in small
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Figure 7. Example image data and results from the analysis algorithm for TRACE 171A
data taken on 1 July 1998 (panel (a)). Panel (b) is the probability that a given pixel supports
an oscillation within the frequency band indicated in panel (c), in this case, a five-minute
oscillation frequency band. Also indicated in panels (a—c) are the detected oscillation regions.
Panels (d—f) show similar maps to those shown and described in Figure 4. Table 2(c) shows
the values for the detected region for the parameters listed in Table 1.

regions distant from the flare site. These locations also typically show an oscilla-
tion which is more of a gentle sway, that is, the oscillation decays very quickly. It
is instructive to consider Figure 3(e) in comparison to Figure 3(b). The spatial
probability distribution is much denser at all lengthscales in Figure 3(e) than
in Figure 3(b). Figure 11 shows that the material of Figure 3(e) has a greater
proportion of higher-probability oscillations than the material in Figure 3(b).
Given the differing spatial distribution, it is clear that everywhere in TRACE
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Figure 8. Example image data and results from the analysis algorithm for TRACE 195A
data taken on 1 July 1998 (panel (a)) in the five-minute frequency band. Panels (b—f) show
similar maps to those shown and described in Figure 7. Table 2(d) shows the values for the
detected region for the parameters listed in Table 1.

field of view on 14 July 1998 was much more likely to oscillate in the five-minute

frequency band. Since the probability map is filtered for regions that show a

locally high probability, many more regions are found in this dataset than in the

previous dataset.
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Figure 9. Example image data and results from the analysis algorithm for TRACE 171A
data taken on 14 July 1998 (panel (a)) in the three-minute frequency band. Panels (b—f)
show similar maps to those shown and described in Figure 7. Panels (b—f) show similar maps
to those shown and described in 7. Table 3 shows the values for the detected region for the
parameters listed in Table 1.

5. Detecting Other Oscillatory Signals with this Algorithm

This paper is primarily concerned with detecting areas in the solar atmosphere
that oscillate with a single frequency, described by Equation (2). Other oscilla-
tions have been found in the solar atmosphere that are not perfectly described
by Equation (2). Bretthorst (1988, ch. 6.1.4) notes that Equation (2) still gives
strongly peaked probability distributions close to the true frequencies even when
the actual signal exhibits features not present in the model, such as periodic
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Figure 10. Example image data and results from the analysis algorithm for TRACE 171A
data taken on 14 July 1998 (panel (a)) in the five-minute frequency band. Panels (b—f) show
similar maps to those shown and described in Figure 7. Panels (b—f) show similar maps to
those shown and described in Figure 7. Table 3 shows the values for the detected region for
the parameters listed in Table 1.

but non-harmonic oscillations and non-stationary and non-Gaussian noise. In
the sections below we discuss some commonly occuring periodic signals in solar
atmosphere, that contain features not modeled by Equation (2), and their effect
on the probability distributions that are at the center of the proposed detection

algorithm.
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Table 3. Quantities reported (see Table 1) for the automatically detected regions found in
14 July 1998 TRACE 171A — see Figure 10, for maps and plots of the detected regions. The
quantities @ and E are also listed with their rank r when compared to all other regions found
in the same dataset. Region 4 is the same region as that studied by Nakariakov et al. (1999)
and Ireland and De Moortel (2002), and region 8 is the base of the same loop. The numbers
Az in the region column refer to the oscillations found manually in Figure 1 of Aschwanden
et al. (1999).

region T+ oy A Ao F D Q.[r(Q)] E.|r(E)]
3 min .

1 6.303 + 0.455 15 9 0938 0879 0.824[2] 12.354 [3]
2 6.383 £ 0.264 20 0 1.000 0.723 0.723 [3] 14.466 [1]
3 6.547 £ 0.151 16 5 1.000 0.849 0.849 [1] 13.581 [2]
5 min

1 3.319 £ 0.052 16 6 0941 0815 0767 [10]  12.279 [22]
2 3.076 £+ 0.127 22 1 0917 0.782 0.717 [22] 15.765 [16]
3 3.408 £ 0.348 30 3 0938 0.781 0.732 [18] 21.958 [12]
4 3.811 £ 0.185 53 26 0.930 0.862 0.802 [4] 42.492 [6]
5 3.117 £ 0.164 93 3 0979 0.778 0.762 [12] 70.856 [4]
6 [A3, 8] 3.616 £ 0.200 236 14 0.992 0.745  0.739 [16]  174.427 [1]
7 [A7] 3.477 £ 0.358 197 1 0985 0.644 0634 [27] 124.969 [3]
8 [A4] 3.556 £ 0.239 54 13 1.000 0.834 0834 [1]  45.025 [5]
9 [A9] 3.038 £ 0.116 34 2 1.000 0.745 0.745 [15] 25.317 [9]
10 3.415 + 0.323 15 6 0.882 0.856 0.756 [13] 11.336 [26]
11 3.163 + 0.231 16 4 0.941 0.832 0.783 [9] 12.534 [21]
12 3.482 £ 0275 18 7 1.000 0.823  0.823 [3] 14.821 [17]
13 3.410 £+ 0.213 16 5 1.000 0.823 0.823 [2] 13.175 [20]
14 3.306 = 0.262 16 1 1.000 0716 0716 [24]  11.459 [25]
15 3.546 + 0.145 36 5 0947 0.757 0.718 [20] 25.835 [8]
16 3.430 £ 0.182 17 1 0944 0.693 0.654 [26] 11.126 [27]
17 [A1,2,6] 3.359 £+ 0.222 247 35 0.939 0.749 0.703 [25] 173.700 [2]
18 3.380 £ 0.272 26 8 0.963 0.764 0.736 [17] 19.134 [15]
19 3.332 £ 0.108 16 3 0941 0.761 0.716 [23] 11.463 [24]
20 3.455 £ 0.132 27 7 1.000 0.788 0.788 [7] 21.274 [14]
21 3.270 £ 0.248 44 7 0936 0.773 0.724 [19] 31.839 [7]
22 3.436 £ 0.215 16 30941 0762 0717 [21]  11.475 [23]
23 3.047 £+ 0.235 30 8 0.968 0.819 0.792 [6] 23.767 [11]
24 3.376 £+ 0.186 33 12 0.917 0.833 0.764 [11] 25.203 [10]
25 3.185 + 0.263 17 4 1.000 0.787 0.787 [8] 13.377 [19]
26 3.124 £+ 0.176 29 8 0935 0.799 0.748 [14] 21.684 [13]
27 3.173 £+ 0.202 17 2 1.000 0.799 0.799 [5] 13.583 [18§]

5.1. Decaying Oscillations

Figure 12 applies the single-frequency model to an example dataset based on
the transverse loop oscillation described by Nakariakov et al. (1999). The data
(shown in Figure 12(a)) exhibits approximately the same properties as the true
observation. Figure 12(b) shows the measured frequency to be close to the true
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Figure 11. Distribution of non-zero probabilities for the 1 July and 14 July 171A data.
The dashed line refers to the 1 July 171A data analyzed in the three-minute frequency band
(120 —240 seconds), as shown in Figure 3(b). The solid line refers to the 14 July 171A data
analyzed in the five-minute frequency band (240-360 seconds), as shown in Figure 3(e).
Average values to each frequency distribution are indicated by the vertical lines of the same
line style. See Section 4.2 for more detail.

frequency of 3.9 mHz. For comparison, Figure 12(c) shows the same time-series
as Figure 12(a) except with no decay, along with the probability distribution
for the frequency in Figure 12(d). The only difference between the two is the
error in the determination of the frequency. This is because the decay in the first
time-series decreases the signal to noise ratio, and so later portions of the time-
series contribute less information to the determination of the frequency, and so
the error increases. This shows that for decaying oscillations of the type already
observed, the probability based methods of Section 2 yield good results. Further,
it also demonstrates that even although we used an inappropriate model, the
model of Section 2 still gives a sufficiently peaked distribution at the right
frequency to enable detection.

5.2. Non-Stationary Frequency Oscillations

Figure 13 applies the single-frequency model to an example dataset based on the
“tadpole” signature of Nakariakov et al. (2004). The example data-set reproduces
the extent of the signal as mentioned in Nakariakov et al. (2004), who claim that
there is a time-varying (i.e., non-stationary) frequency present in a signal found
by Katsiyannis et al. (2003) (see also Williams et al., 2001, Williams et al., 2002)
in the Solar Eclipse Imaging System (SECIS) of Queens University, Northern
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Figure 12. Effect of an exponential decay in the observed signal on the detection of an oscil-
lation. Panel (a) shows the observed noisy time series signal (dotted line), the true (non-noisy)
signal (solid line) and the estimated signal (dashed line). Panel (b) shows the probability-den-
sity function for the observed signal as defined by Equation (3). Panels (c) and (d) are the
same as (a) except the exponential decay is no longer present. The probability-density function
in Panel (d) is much narrower than in Panel (b). The effect of the exponential decay is to make
the location of the average frequency more uncertain. This is because the signal-to-noise ratio
decreases due to the exponential decay and therefore there is less information to determine the
frequency when compared to the observed signal of panel (c). See Section 5.1 for more detail.

Ireland eclispe data taken on 11 August 1999. Their observation is modeled as
having a signal to noise ratio of 1.5, and a non-stationary frequency that lowers
by 5% over the range (Figure 13(a)). The result of an analysis using Equation
(12) with Equation (2) (note that Equation (3), as used in the automated de-
tection algorithm, is essentially the same) is shown in Figure 13(b). Figure 13(c)
shows the same extent of signal except that now the oscillation is stationary.
Note that the algorithm will not detect the oscillation as being non-stationary
or as not extending across the observation range, as neither of these effects
are included in the model oscillation Equation (2). However, the probability
distribution functions Figures 13(b,d) are strongly and singly peaked, and they
would therefore be detected given a wide enough detection window wy,ws (see
Equation 7).

5.3. Multiple discrete frequencies

The results stated in this paper are derived with regard to a single frequency
model, Equation (2). Initial identification of a pixel as containing a significant
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Figure 13. Effect of a non-stationary frequency in the observed signal on the detection of
an oscillation. Panel (a) shows the observed noisy time series signal (dotted line), the true
(non-noisy) signal (solid line) and the estimated signal (dashed line). The true signal consists
of noise at 0 < ¢t < 14 and a time-varying frequency at ¢t > 14. Panel (b) shows the probabili-
ty-density function for the observed signal as defined by Equation (3). Panels (c) and (d) show
the same quantities as (a) and (b) respectively except that the frequency in the observed and
true signals are constant at ¢ > 14. The peak of the probability-density in panel (b) is at a
lower frequency than in panel (d) because the observed signal contains more low frequencies.
Note that in both cases the probability-density function is strongly peaked and so most of the
probability lies in a narrow band around the peak. See Section 5.2 for more detail.

oscillation relies on the integrated probability over a user-defined frequency band
exceeding a high user-defined limit (in this case, 0.95, see Section3.3). If there are
multiple frequencies inside the user-defined frequency band and the integrated
probability exceeds 0.95, then the algorithm will report a detection at that pixel
and report the average frequency (and error) within that frequency band. It
cannot do any more, since the model assumes the presence of only a single
frequency.

Consider now the case of two well-separated frequencies such that one fre-
quency lies inside the user-defined frequency band (w1, ws, Equation (7)) and the
other lies outside the user-defined frequency band (Figure 14a). Both frequencies
are present in the observation, and both have the same amplitude and signal-to-
noise ratio. The model however, supposes the presence of one frequency. Hence
the probability will be split between these two frequencies (Figure 14(b)). Which
frequency has the highest probably depends on the evidence for each in the
time-series, that is, the number of oscillations in the time series and the signal-

ts_preprint.tex; 4 July 2010; 9:16; p. 24



24 Ireland et al.

(a) time series - decay

W0 J e
4K . — estimate
— 2
2
o 0
"2
7 N
—4true: cos(2f ) +cos(2mfyt) + N(0,1)
v f12=3.89,6.03mHz=
—6model: bcos(2rt) +bysin(27ft) +N(0,0) ‘ ‘ ‘
0 200 400 600 800
time (seconds)
(b) probability
-1
10 T T
%8-3 I
105 tru
102 |
107 !
g 16 Vo
I
10,
10»11 |
1075 X
10,3 |
181 |
10 A

5 6
frequency f (mHz)

Figure 14. Analysis of a time-series that has two widely separated present. In panel (a), the
observed signal (dotted line) is a noisy observation of the true signal (solid). The estimated
signal (dashed) is found using Equation (3), a single frequency model. Panel (b) shows the
probability-density function (Equation (3)) of the observed signal. In this case, the maximum
probability density is close to the frequency of the higher frequency signal because the signal
contains more information about this frequency than the lower frequency. See Section 5.3 for
more detail.

to-noise ratio for each frequency present. In the case above, the most probable
frequency is in the three-minute wave band. If one were looking in this frequency
band, then a peak would be detected and the algorithm would decide if there
were enough probability in the user-defined frequency band [w;,ws] to claim a
detection. However if the user-defined frequency band [wq,ws] was in the five-
minute frequency band, then since the majority of the probability lies outside
this range, no detection would be claimed. However, we note that observations
of multiple oscillations in single structures in the corona show one dominant
oscillation and a second, much weaker oscillation (Verwichte et al. (2004)).
Therefore, the situation of Figure 14(a) — two oscillations of equal amplitude
but different frequency — is observationally unlikely in the corona. However, one
may use the approach here to first identify pixels that have a dominant oscillation
present, and use other methods to examine for the presence of secondary, smaller
amplitude oscillations.

Deciding how many frequencies a time-series supports is specifically excluded
by the model choice at the start, that is, a single oscillation plus noise. To prop-
erly decide how many frequencies are present in a time-series, one must define
a model for each case to be considered (either no frequencies, one frequency,
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two frequencies, three frequencies, etcetera), calculate the probability of each
model, and decide which model is the most probable. Bayesian probability tests
hypotheses (given the data), and those hypotheses must be explicitly stated.
Introducing other hypotheses, such as multiple frequency models, is asking a
different question of the data. For example, multiple frequencies have long been
observed in the type of sunspot observations examined by Marsh, Ireland, and
Kucera (2008), and therefore a single-oscillation model is inappropriate to start
with; one simply would not use this model in this case. In addition, the ap-
proach taken by Marsh, Ireland, and Kucera (2008) is prohibitively expensive
computationally at present, and so is not suitable for the automated detection
of oscillations in large datasets.

6. Conclusion

Oscillations in the solar atmosphere have already demonstrated their worth as
probes of the physical conditions present. SDO will be a major contributor to the
study of solar atmospheric oscillations, and automated detection algorithms will
be necessary in order to maximize the scientific potential here. The algorithm
parameters in the filtering procedure (see Section 3.3) will have to be tailored
to SDO data; other algorithms will also probably have to undergo a “tweaking”
phase to operate optimally.

The algorithm described here is a first attempt at implementing an automated
coronal oscillation detector based on a Bayesian understanding of probability.
It shows promise in being able to find areas of the solar atmosphere that are
highly likely to support an oscillation. Section 4 shows that it is able to find both
longitudinal and transversely oscillating loops at low estimated signal-to-noise
ratio over a complex background scene (the non-oscillating or slowly varying
background, where slowly varying is understood as evolution longer than the
characteristic timescale of the background trend subtraction). We note that even
by eye, these events appear to be at low signal-to-noise ratio, and the estimates
calculated here (Figures 4-10) agree with this observation.

We also examined the same quiet-Sun TRACE 1600 and 1700A data as
Mclntosh, Fleck, and Tarbell (2004). In that paper, the authors calculate the
travel time of waves in two different UV wave bands, with the understanding
that the entire FOV contains oscillations. We find that almost the entire FOV
contains oscillations. The algorithm returns positive detections over almost all
of the FOV for other TRACE UV data (McAteer et al., 2004) . In both cases the
detection itself takes only a few seconds: however, the other parameters such as
signal-to-noise ratio takes many multiples of the detection time. This suggests
that a line production version which generates data products similar to Figures
4, 10, or 6 be restricted to data where we know that only a small percentage of
the FOV contains a signal, such as the higher temperature corona. An alternate
mode of operation is that the reported quantities are restricted to detections
only, with further quantities (such as signal to noise ratios) calculated offline by
the interested user.

The model oscillation that Equation (2) describes, for a single pixel, a sinu-
soidol intensity oscillation existing for the entire duration of the time-series, in
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the presence of Gaussian noise. Although this seems quite a restrictive model,
it is clear from the results of Section 4.2 that it is sufficient to enable the
detection of decaying transverse oscillations. Indeed, Ireland and De Moortel
(2002) showed that the oscillation studied by Nakariakov et al. (1999) (region 4
in Table 3) displays non-Gaussian noise and a linear change in period over the
measurable duration of the oscillatory motion, complications not contained in
the model choice, Equation (2). A transverse oscillation on a single pixel appears
as a periodic non-sinusoidal change in intensity as the loop swipes across the
field of view. Despite the great difference between the model choice and the
appearance of such an oscillation in this analysis, the resemblance between the
two is sufficient for our algorithm to be able to detect transversely oscillating
material. This is an example of the sufficiency of the model, (Equation (2)), to
adequately describe a wide range of periodic behavior, as previously noted by
Bretthorst (1988).

The algorithm runs quickly on the data (less than a minute, reported in Table
4) on an Apple MacBook (dual core, 1.6 Ghz processor), without any special
efforts at algorithmic optimization. Analysis of binned (prepared) full-disk SDO
data (see Table 4) is possible with existing computers. Note, however, that the
analysis times quoted do not take into account the time required to prepare the
data for automated oscillation analysis. This overhead will presumably be the
same for all detection algorithms, and must be considered in design of a full-scale
operational SDO oscillation-detection algorithm in order for it to run faster than
the time taken to acquire the data.

This paper introduces two new features to the discussion of automated detec-
tion of oscillations in the solar atmosphere. Firstly, the algorithm is implemented
using a Bayesian interpretation of probability as a “degree of belief” as opposed
to the standard interpretation as “frequency of occurence” (leading to powerful
and convenient formulae such as Equations 12 and 3). At the core of the algo-
rithm lies the probability that solar atmospheric time-series can be described as
a single sinusoidal oscillation at a fixed frequency, subject to distortion Gaus-
sian noise. As Bretthorst (1988) notes, this is a good approximation for many
purposes. This algorithm does not say anything about the presence of two or
more sinusoidal signals in a single time-series. However, it is certainly possible
to develop an analysis algorithm to assign probabilities to each of the three
hypotheses that the time time-series is either noise, contains a single frequency or
contains two frequencies. Most of the required mathematics is quoted or referred
to in this work; such an algorithm will be the described in future developments.

Secondly, we have introduced “quality measures” in an attempt to grade the
regions that survive the region finding and filtering process. This appears to
be necessary given the large number of oscillating regions that can occur in
a given dataset, for example the 14 July 1998 TRACE 171A data. Further
criteria may be set by individual users. For example high values of the ratio
Ag.95/A indicate that the region has a high proportion of pixels very probably
supporting a frequency; a threshold could be set to filter only those regions that
have a high proportion of very certain pixels. In addition, the current VOEvent
standard makes for the provision of extra algorithm information such as arbitrary
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Table 4. Performance of the algorithm on the analyzed data compared to data
acquisition time. Also shown is the projected performance on SDO data.

data data size algorithm time [observation duration]

1 July 256 x 256 30 [6231]
201 samples
31 s cadence
14 July 368 x 368 25 [3431]
47 samples
31 s cadence
raw SDO 4096 x 4096 7641 [2000]
200 samples
10 s cadence
2 X 2 X 2rebinned 2048 x 2048 955 [2000]
SDO 200 samples
20 s cadence

parameters (R, m) to be carried along with any results. This means the user will
be fully informed of all the parameter values used to obtain the results.

Future algorithm development will concentrate on improving the probability
map filtering (step 6 of Figure 2, and also Section 3.3), extending the analysis
to assign probabilities to multi-frequency models, and to distinguishing between
longitudinal and transverse oscillations (it may be possible to assign a prob-
ability that a given wave-mode has been observed). Understanding the wave
mode demands an understanding of the structure on which it is supported,
which naturally leads to the automated detection and characterization of loop
structures, which is a complex topic by itself (see Aschwanden et al. (2008) for
a review). We hope that the algorithm presented here is a first step towards
automated coronal seismology.
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Appendix
A. The General Linear Model

A time-series is a special case of a more general linear model description. In
this section we briefly recap the argument of O Ruanaidh and Fitzgerald (1996)
in deriving Equation (3). In this description, a signal d(i) observed at times t;
(1 <i< N),is modeled as

d(i) =Y brgi(i) + (i), (8)
=1

with M basis functions g (7), each of amplitude by, evaluated at time ¢; (param-
eterized by {w}) and Gaussian distributed noise x(i) of mean 0 and standard
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deviation o. In the context of Section 2, the observation D is equivalent to
the signal d(7), and the hypothesis H is that the data can be described by the
right hand side of Equation (8), including the noise. In matrix form, the above
equation may be written as

d = Gb +x, (9)

where d is a N x 1 matrix of the observed data, and x is a N x 1 matrix of
identically distributed and independent Gaussian noise samples. The matrix G
is size N x M; each column of G is one of the basis functions evaluated at all ¢;.
The matrix b is a M x 1 matrix, the linear coefficients of each of the (column)
basis functions in G. The likelihood function of the observed data is

XTX
p(d{w},o.b. 1) = (27T012)N/2 oXp [_ 202]
(d — Gb)T(d — Gb)
= (27r02)N/2 exp {— 952 ] (10)

where {w} parameterize the basis functions g, and hence G. This equation is
derived by multiplying together the probability distributions of the noise x; at
each time i. The exponent shows that maximizing the probability is equivalent to
minimizing the difference between the data and the basis functions (weighted by
their amplitudes); indeed, this equation forms the basis of least-squares fitting
in the presence of Gaussian noise.

In analysis, one is primarily interested in the values of the parameters {w},
and secondarily interested in the other values such as b and o. O Ruanaidh
and Fitzgerald (1996) and Bretthorst (1988) describe the process by which
the “nuisance parameters” b and o are removed from further consideration by
marginalization. The statement of Bayes’ theorem for the general linear model,
using Equations (1) and (10) is

{w},b,a|l)p(d{w}, 0, b, I)
p(dlI)

Integrating over b and o using a prior p({w}, b, o|I), removes these variables

from further explicit consideration, and is an example of Bayesian marginal-

ization. On integration, this obtains the marginal posterior distribution for the
parameters {w}:

p({w}.boold, 1) = 2L

p({w}|d,[):/b/p({w},b,a|d,l)dadb. (11)

O Ruanaidh and Fitzgerald (1996) and Bretthorst (1988) use uniform priors
for the amplitude parameters b (p(b,I) = constant) and the Jeffreys prior
(p(o|I) x 1/0) for o. On integration,

M—N
[dTa-d’c(GTG) GTd}( "

det (GTG)

p({vadvI) S (12)
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Equation (12) is a function of {w} only; the standard deviation (i.e., the noise
level of the time-series) or the amplitude of the basis functions (the values b) need
not be known in order for estimates of {w} to be found. This is a very powerful
equation, with clear application to solar time-series analysis, where estimates of
the noise level and oscillation amplitude in the data are often difficult to obtain
by direct fitting of model functions to the observed time-series. It should also be
noted that Equation (12) arises from Equations (9) and (10), which is the basis
of a general least squares fit to the data given Gaussian distributed noise.

B. Estimating Basis Function Amplitudes and Variance

Maximizing Equation (10) with respect to b (on substitution of Equation (9))
leads to an amplitude estimate:

b= (G"G) ' G"d. (13)

This maximization is identical to the “least squares” fit to the data for a given
value of {w}. Given these amplitudes, the model fit is then

f = Gb. (14)

In addition, O Ruanaidh and Fitzgerald (1996) show that an estimate (found by
maximizing the posterior after marginalizing the amplitudes) to the Gaussian
variance is
A 1
2 = d’d - f'f 15
o* = 71 | ] (15)
This estimated variance is the data energy minus the estimated signal energy,
divided by the number of degrees of freedom. Note that b and o2 are functions
of the analyzing frequency [w]. Equations (13) and (15) are calculated for the
oscillating regions detected via Section 3 and returned as part of the results in
Section 4 (see Figures 4, 5, 7, and 8).
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